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and outputs stable during the appropriate phases. The timing
optimization of multi-phase logic entails the reduction of the overall
cycle time of the machine as well as input to output delays by
distributing computation throughout the entire clock cycle.
Currently, no tools are available to automatically perform this
optimization task for multi-phase logic. We have developed such a
tool as a set of extensions to the combinational logic optimizat~ion
tool, misII. Our algorithms yield improvements that are 20% better
than what is achievable using only combinational logic optimization
tools that do not move logic across latches. Furthermore, we achieve
65% of the improvements possible in the most idealized case. Results
on simple two-phase circuits show average input to output delay
improvements of almost 20% with area penalties of less than 12%. For
a four-phase controller used in the SPUR processor it yields an
improvement in cycle time of 21% with an area penalty of 21%.
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Timing Optimization of Multi-Phase Sequential Logic

Karen Bartlett, Gaetano Borriello, Sitaram Raju

Department of Computer Science and Engineering FR-35
University of Washington

Seattle, WA 98195

Abstract storage elements. Pre-charged logic eliminates
approximately one half of the transistors required

High-performance MOS circuits are frequently to implement a logic function (yielding higher
designed using pre-charged and dynamic logic. This density) and can eliminate long chains of transistors
requires the use of multiple phases of the system connected in series (yielding higher performance).
clock to ensure that the circuitry is pre-charged and The price that must be paid is that, unlike static
refreshed at the proper times during each clock design, these types of circuits require the careful
cycle. Finite-state machines used to control this management of computation flow during the clock
type of logic must therefore be constructed as multi- cycle to ensure correct operation. For example,
phase sequential logic with inputs and outputs while the output of fully complementary
stable during the appropriate phases. The timing combinational logic can be sampled throughout the
optimization of multi-phase logic entails the clock cycle, the output of a circuit that utilizes pre-
reduction of the overall cycle time of the machine charging can only be sampled while it is not being
as well as input to output delays by distributing precharged. This naturally leads to at least two
computation throughout the entire clock cycle, phases of a clock cycle: one used for pre-charging
Currently, no tools are available to automatically and one used for evaluation. Also, while edge..
perform this optimization task for multi-phase triggered static latches can be controlled by a
logic. We have developed such a tool as a set of single-phase clock, level-sensitive latches require

extensions to the combinational logic optimization at least two phase clocks to control the flow of data
tool, mis iI. Our algorithms yield improvements around feedback paths.
that are 20% better than what is achievable using The general class of circuits built using these more

only combinational logic optimization tools that do complex and higher performance timing
not move logic across latches. Furthermore, we methodologies is referred to as multi-phase
achieve 65% of the improvements possible in the sequential logic. Multi-phase finite-state machines
most idealized case. Results on simple two-phase have inputs and outputs that are only valid during
circuits show average input to output delay a subset of the clock period corresponding to one or
improvements of almost 20% with area penalties of more phases of the clock. For example, while in
less than 12%. For a four-phase controller used in single-phase edge-triggered designs the output of

the SPUR processor it yields an improvement in one block can be an input to any other block, in
cycle time of 21% with an area penalty of 21%.,/' multi-phase designs the phases during which a

I 4 ) signal is stable determine how it can be used. In

L Introduction some cases, a signal may need to be delayed and
\ syr .hronized to another phase of the clock before it

The design of digital MOS circuits is simplest and can v used as an input to another logic block.

most robust when fully complementary In designing multi-phase sequential logic, the

combinational logic and edge-triggered static designer must determine the phase during which

storage elements are used. This style of design each logic function will be performed. There are

permits the circuit to be controlled by a single- two extreme cases. Outputs dependent on inputs

phase clock and eliminates concerns about dynamic from the immediately previous phase restrict the

storage times. However, this type of design is placement of their logic to a single phase. The

usually not the densest nor the fastest possible. other extreme is the state logic of a finite-state

The design of high-density high-performance machine which can be spread over all the phases of

MOS circuits usually requires the use of pre-charged the clock cycle. In general, it is difficult to

combinational logic and level-sensitive dynamic determine which placement will lead to the



overall smallest or fastest design. Furthermore,
timing optimization of this class of circuits has two Phil -'-- "-
aspects: the minimization of both the overall cycle
time and the delay from primary inputs to primary Phi2
outputs. Phi3 "F

A Model of Multi-Phase Sequential Logic

Figure 1 shows three phases of a clock and a 12

graph for the structure of the multi-phase networkC1
used for this timing scheme. In an n-phase system
the individual phases are labeled 01 through on 01
where the occurrence of on in one cycle immediately
precedes the occurrence of * in the next. A node i C31 C23
represents the latches that are active during Oj. An
edge (i,j) represents the block of combinational logic
(Cii) that generates the signals output on O (where
*i immediately precedes 0j). There are n logic
blocks, one for each phase of the clock. The time 03 13
available for computation in block Cii is measured
from the rising edge of Oi (the block's start phase) Figure 1
to the rising edge of O (the block's end phase).

The logic of the original specification is The longest path through a block and the
partitioned into blocks. Primary output and propagation delay of any latches on the inputs of
internal state logic is placed in block whose end this path determine the time between the rising
phase is the phase,.during which the output signal edges of the start and end phases of the block (i.e.,
is latched. When signals are dependent on an input the time from when the input latches of the block
that arrives earlier than the start phase of the are loaded with new data and it propagates
block then that input is delayed through the through the LHtch and logic of the block and
earlier block. Therefore some inputs will simply be appears at the output). These computation times
passed through one block to another. Signals output will be used to precisely position the rising edges of
more than once during a cycle will have their logic each clock phase within the clock cycle used to
duplicated. For example, a gate that has one input control the circuit. The duration of each of the
sampled on 01 and another on 03 and whose output is phases (i.e., the time between the rising and falling
required during both 02 and 04 will be duplicated in edge) is bounded from below by the minimum time
blocks C12 and C34 and all four blocks will pass at required for the latch to be active and properly
least one input to later blocks, store the input value and from above by the

The cycle time of the sequential logic is defined as requirement of preventing race conditions along the
the sum of the delays along the cycle in the graph feedback paths in the circuit. That is, if all the
passing through all the logic blocks and latches, latches along a cycle in the circuit are active then
Latches are required for every input and output to the fastest logic along that cycle must be slower

than the overlap time of the phases along the
sample and hold the data values. However, they
are not required at every connection between the path. This restriction is both necessary and
blocks as the graph model may at first seem to sufficient to ensure proper operation. Many designs
imply. Latches are only needed to break cycles in adopt a non-overlapped clocking scheme precisely
the logic and ensure that no race conditions exist to avoid this added constraint. In that case, the
through the latches. If edge-triggered latches are position of the falling edge is determined by the
used then every cycle must be broken by at least one position of the rising edge of the next phase. This is
latch. In the case of level sensitive latches, at least not an issue with edge-triggered latches where the
two latches clocked by different phases of the clock upper bound on the duration of a phase is simply the
are required and the two phases must underlap (i.e., clock period.
both are inactive) at some point during the clock In some cases, inputs may arrive earlier than the
cycle. rising edge of the start phase that will sample

their value into a latch. This early arrival time
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permits the movement of some combinational logic by the initial latch boundaries. Recent algorithms
before the latch and thereby reduces the amount of [DEMI89, MAL1891 have utilized both logic
computation once the new values enter the block, optimization and global retiming techniques.
Logic pre-computed in this manner is termed pre- However, these approaches are still fundamentally
block logic (pre-Cii). Similarly, outputs may not be limited by the global retiming algorithms to single-
required for some time after the rising edge of the phase or equal duration multi-phase logic.
end phase that will load their value into a latch.
This late required time permits the movement of Structure of the Paper
some combinational logic after the latch and
thereby reduces the amount of computation required The paper is divided into six main sections. The
to produce the output before it leaves the block, first section is this introduction to the problem
Logic post-computed in this manner is termed post- domain and the terminology required to discuss
block logic (post-Cii). multi-phase sequential logic. Section 2 introduces

the basic transformations that can be used to
Related Optimization Approaches restructure a circuit and improve its timing

characteristics. Section 3 presents an overview of
Currently, there are no automatic tools to help the algorithm we have implemented to automate

designers with the timing optimization of multi- the timing optimization process. Section 4 explains
phase sequential logic. However, there are two the required latch manipulations and
types of tools that might serve as a starting point optimizations. Section 5 describes the details of the
for automating this process. The first approach uses extensions to the logic and timing optimization
retiming algorithms while the second exploits routines provided by ms I r. Section 6 details the
combinational logic optimization tools but neither results obtained by our algorithm on a collection of
approach alone nor a combination of the two is examples including a subset from the International
enough to address the problem for multi-phase Logic Synthesis Workshop benchmark set [LISA8]1
logic, and a four-phase controller from the SPUR CPU

Global retiming algorithms such as the design [HILL88, KONG89]. Section 7 concludes the
algorithm of Leiserson and Saxe [LEIS83, SAXE851 paper with some summary remarks and a
can optimally reposition latches within a Boolean description of future work.
network so as to minimize overall cycle time.
However, the linear programming formulation used II. Basic Transformations
to solve this optimization problem cannot be easily
and efficiently extended to consider restructuring of In this section, we use a small two-phase
the Boolean logic. Often, minor changes in logic sequential circuit to outline the basic
permit the realization of a much faster circuit. transformations necessary for timing optimization.
Another deficiency of this approach is that it These transformation involve the movement of
assumes a single-phase clock. This restriction can be combinational logic across latch boundaries.
relaxed somewhat to address multi-phase logic if
each phase is viewed as an entire clock cycle and A Brief Example
therefore implicitly restricted to being of the the
same duration and appropriate constraint equations Figure 2 shows the structure of a simple two-
added to the linear program formulation. However, phase finite-state machine that was designed as
this is impractical in high-performance designs part of a custom routing chip for a parallel processor
where each phase is compressed as much as interconnection network at the University of
possible. Also, there is no method for removing Washington [EBEL88I. It has inputs and outputs on
unneeded latches (see Section 4) except in a post- both phases and two blocks of combinational logic
processing step where timing information cannot be (the circles represent latches).
used to optimize the placement of the remaining The first problem encountered in the design of this
latches. machine is in its specification. There are at least

Logic optimization tools such as misI [ BRAY87, three equivalent ways to describe the machine.
SING881 and Bold [BART87I can dramatically They differ only on when state transitions occur
improve the area and performance of combinational during a clock cycle. First, all the transitions can be
circuits. However, these optimizations only on 0Z so that all the inputs arriving on the previous
operate on the distinct combinational blocks defined #1 must be delayed until the next 02 and a state
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diagram constructed based on that model. Second, function of inputs and state sampled on 02 (DV,
the transitions can be on 02 and the inputs on 02 TBit, RBit) and generates outputs on oi (QOPush,
must be delayed to the next 0I. And third, QIPush).
transitions between states can be permitted on both
phases of the dock. C12 C21 lat- tot cycle

del lit del lit ches area time
01 02

most-C12 4.2 14 7. 72 20 126 11.7
most-C21 9.5 72 4.8 16 25 138 14.1
C12..Q1 4,7 29 6.7 49 19 116 11. A

Qiiu ii 
Table I(Q0Full [

Q1A~uIIThe three implementations differ in where the
next-state computations are performed. In most-

02 C21, the state computation is performed entirely in
the C21 block. The state bits are inputs to the C1 2
block and are also forwarded as inputs to C21 after

DV being delayed one phase so as to be synchronized
"Atus. RBit with the other inputs to C2 1 . Block C12 also

Ql~sh 21Thit forwards the value of its 01 inputs to C21 after they
are synchronized to 02. In the symmetric
implementation, most-C12, the state computation is
performed entirely in C12. C2 1 forwards both state

01 02 bits and 02 inputs to C 1 2 . The C12-C21
implementation has state computation occurring in

Figure 2 both blocks with the state bits changing on every

phase rather than every cycle as in the other two
Finite-state machine synthesis tools currently implementations. This is what makes the

support only the first two models with the specification ot this implementation difficult for
translation of inputs (and similarly the outputs) current finite-state machine synthesis tools.
performed by the designer before specification. Furthermore, the logic of this implementation is
These models yield two machines described in Table more balanced across the two blocks, it is smaller in
I entries most-C12 and most-C21. Most of the logic both literals and latches (latches are counted as 2
is in one of the two blocks with only enough in the literals, i.e., a 2-input NAND), and is the fastest of
other block to ensure that no extra phase translation the three.
delays are introduced on input to output paths. The All three implementations of the state machine
two machines differ substantially in terms of the are input-output equivalent but have different state
number of latches, logic literal count, and cycle bits (defined as the values stored in the dynamic
time. However, given that the two synthesizable latches controlled by the clock phases). In fact,
machines are input-output equivalent, it should be they can be viewed as being derived from each
possible to implement a synthesis tool that can other by a series of transformations that move
transform one machine into the other and reach all combinational logic across latch boundaries. Many
the intermediate implementations as well. One other implementations are possible besides those
such intermediate representation is the one shown of Table 1. Our objective is to find one that
represented by the third specification option and has the best timing characteristics in terms of
the third row in Table 1, C12-C21. The three overall cycle time as well as input-output delay.
machines all have the same basic structure (see The remainder of this section is a more detailed
Figure 2) but with some important differences. In discussion of how logic is moved between logic
each, the C12 logic block computes a function of the blocks allowing us to move through the design space
inputs and state sampled on 01 (QOFull, QIFuI, and find better implementations with respect to
QIAFuI, QOAFulI) and generates an output on 02 timing.
(TDout). Similarly, the C2 1 logic block computes a
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Moving Logic Forward and Backard either forward or backward to other blocks so as to

minimize overall cycle time. Initially, the

Logic at the head of a logic block (i.e., logic with combinational logic of each block is optimized for
fanout only going to an output of the block) can be tining and area using mi s I I
moved out of the block, across any latches on the The C72-C21 implementation of Table I was
output, and into the tail of a subsequent logic block, derived from an initial implementation (most-C21)

Similarly, logic at the tail of a logic block (i.e., obtained by using standard finite-state machine
logic with fanin coming directly from an input of the synthesis tools. The output of the tools was
block) can be moved out of the block, across any modified by placing some logic in C1 2 so as to not

latches on the inputs, and into a previous logic incur extra input to output delays due to phase

block. These operations are illustrated in Figure 3. synchronization. In deriving C12-C21, logic was
moved back from C21 to C12. The logic that is

moved depends only on inputs that are valid on Oq
and thus can be computed earlier (i.e., moved back
to C12), reducing the compute time of C21 . If as much
logic as possible is moved from C21 to C12 then we
arrive at the most-C12 implementation.

Move 11L Th Timing Optimization Algorithm
Mo Backward

Forward\ S Our algorithm for the timing optimization of
multi-phase logic is similar in approach to the

~ logic optimization algorithm of mis 9 11. A
collection of routines have been defined that
implement the sequential logic transformations and
restructuring outlined in the previous section. The
timing optimization algorithm is a script that uses
these routines to perform the transformations in the

Figure 3 appropriate places in the logic.
Our script consists of four major steps: (1) obtaining

The eftect of the moves is two-fold. First, the an area and timing optimized technology mapped
number of output or input latches is changed and representation of each logic block, (2) determining a

therefore a different set of logic values will now be goal delay for each block correspontkng to the

stored as state changing the state assignment for the minimum delay from primary inputs to primary

finite-state machine. Second, the critical path outputs of the block (not considering inter-block

delay of the two logic blocks may also be changed. inputs and outputs), (3) transforming the multi-

If the logic to be moved is on a critical path of a phase network so as to satisfy the goal delay times

block then the duration of the clock phase for that as much as possible, and (4) assigning latches to

logic block may be shortened. However, if the logic inputs, outputs, and inter-block signals so as to

is moved onto a critical path in the other logic block ensure no race conditions and unclocked feedback

it may lengthen the duration of the clock phase for paths.
that block. The first step of the algorithm generates a

In cases where no logic can be moved with the starting point for the network. mi s I is used to

existing configuration of logic gates restructuring generate an area and timing optimized multi-level

may be required to generate logic that can be moved, logic implementation of each logic block [BRAYS7I.

Restructuring does not change the logic function but The resulting logic is then technology mapped so

only its decomposition into logic gates. Examples of that later operations can use an accurate delay

restructuring include moving late arriving inputs model corresponding to the implementation

later in the network (as in mis I I speed-up. technology.
SING88]) or simply decreasing the grain size of the The second step determines a goal delay for each

logic by decomposing a larger gate into smaller ones. block before moving any logic. The goal delay is

These transformations form the basis for our defined as the minimum achievable delay from

algorithm for timing optimization. Our approach is primary inputs to primary outputs of each logic

to select the appropriate blocks of logic to be moved block. it does not consider inputs from or outputs to

5n l I I I



other logic blocks. The goal delay time for each The critical path in the logic then determines the
block is obtained by running mis I I for timing position of the rising edge of o.
optimization with primary input arrival times set The goal delay may also be user specified value if
to 0 while inter-block inputs are set to -. , inter- the phase is known to require some minimum
block output required times are set to +.-, and duration due to constraints imposed by other parts of
minimizing the time for the primary outputs. This the design. In that case, the user supplied value is
minimum time represents the best achievable input used and no goal delay is computed for the block.
to output delay through the logic block by An important assumption is being made in
considering only the logic that must absolutely be computing the goal delay. Namely, that state
within the block, that is, the logic to generate computation will not be on a critical cycle in the
outputs at the end phase from inputs sampled at the circuit and will therefore not limit the achievable
start phase. It assumes that all other logic will not cycle time. This assumptions is, of course, not
be on the critical path and if so that it can be moved always realistic. State computations can be quite
to an earlier or later block. This is an ideal that extensive when state information is tightly
may not necessarily achievable but serves as an encoded. Therefore, the goal delay is an objective or
upper bound on what is possible and is used to guide lower bound on the separation between clock phases.
and/or limit the movement of logic between logic 'it simply provides information to direct the
blocks. In section 6, we will measure the success of algorithm in selecting the blocks to which it should
our algorithm based on how close the resulting attempt to apply the transformations.
circuit is to this idealized goal. The goal delay of a block is computed by deleting

The third step of the algorithm applies a series all critical pre-computable logic. Pv-computable
of transformations to the network to attempt to logic is the logic at the tail of a block Cii that can be
satisfy the goal delays. These involve moving logic moved back. Logic can be moved back if all of its
on the critical path backward or forward to another inputs arrive sufficiently early so that some
block and restructuring logic to enable such moves, computation can be achieved before the rising edge
The goal delay is used to focus where the of of. All logic in terms of primary ilnputs sampled
transformations are applied. The script begins by on earlier phases than #i, outputs of other blocks
not permitting moves that would violate the goal with end phase of, and inputs with sufficiently
delay of the destination block. Later, the goal early arrival times with respect to of may be pre-
delays of the blocks are adjusted to enable moves computable. io enable additional logic to be pre-
which improve the total cycle time. Moves that computed the logic may need to be retructured.
would violate the goal delay of another block are cud the logic may ne
permitted if they improve or do not have too Restructung izs the process by which logic can be
detrimental an effect on the overall cycle time (a reorganized so that early arriving inputs are placedpclvalue is 20%). This capability lessens the at the tail of the block. During goal delay

eyical alue of the approach. computation only primary outputs are considered
greedy nature critical, state outputs have a required time of -.

The last step assigns latches to the primary Therefore, all critical pre-computable logic will be
inputs and primary outputs of the logic as well as to in the transitive fanin of a primary output.
enough inter-block signals to ensure that there will Restructuring is accomplished using the mis I I
be no race conditions or unclocked feedback paths. delay optimization routines and information on how
The number of latches is minimized to reduce the early the inputs are available relative to Oi
area of the resulting circuit and their placement is e t i s l i ooptimized so as to have minimal impact on the [SING88].
fptminal dlays thve nil it oThe amount of logic that can be moved into a blockfinal delays in the circuit. is constrained by the block's goal delay. Goal

Goal Delay delays may be adjusted if increasing the delay of a
block Cii by A enables the delay of a block Cjk to

The goal delay for a block Cii with start phase decrease by more than A thus reducing the totaland end phase fj corresponds to the minimum cycle time, the goal for Cij is adjusted upward by %separation between the rising edges of and .I and the goal for Cik is adjusted downward to the
is defined by the minimum time needed to generate delay of the new critical path of the block.
the primary outputs of the block that are dependent Based on user specified paraeters, adjustments
on primary inputs and the latch time for those that increase the total cycle time may be allowed.

inputs. Time 0 corresponds to the rising edge of 01. This enables the optimization of blocks of
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Ai
particular interest to the user and permits to the next block) must have slack greater than or
detrimental logic moves that lessen the greediness equal to the delay of L.
of the approach. Adjusting the goal upward when Logic is selected to be moved so as to have
it appears unsatisfiable enables additional logic to minimum impact on the critical paths of other
be moved into the block, possibly decreasing the blocks. Therefore, logic to be moved is prioritized
delay of other blocks. A downward adjustment may based on the block to which it will be transferred as
enable additional critical logic to be moved out of follows: (1) to pre-block or post-block logic that
the block, thereby further reducing the total cycle does not limit the overall cycle time, (2) to non-
time. critical paths of other blocks, or (3) to other blocks

In summary, the goal delay is computed by that can tolerate an adjustment in their goal delay.
repeatedly moving logic off the block, restructuring Restructuring is used to create new logic to be moved.
the logic to enable additional logic to be moved, and Also, the goal delays may be adjusted to enable
continuing this process until as much logic as additional moves as described above. The process of
possible has been moved. The goal delays may be moving logic and adjusting goal delays continues
adjusted to tradeoff critical paths in connected until no beneficial transformations are possible.
blocks.

IV. Latch Manipulations
Retiming the Multi-Phase Network

Logic optimization is only part of the process of
A multi-phase network is retimed by moving logic optimizing sequential logic. In the case of multi-

across latch boundaries. This is done so as to satisfy phase sequential logic, the positioning of latches
the goal delays of each logic block. The most must also be considered for both timing and area
important aspects of our retiming algorithm are: the optimization. This flexibility is available because
heuristics used to determine the logic to move in latches are not required on every inter-block
each iteration, the restructuring performed in order connection (see section ).
to enable more moves, and the adjustments to goal
delays. Area and Timing Optimization

Before attempting any moves a slack must be
computed for each node in the combinational Our algorith-n for positioning latches is based on
network of each logic block. An arrival time and a a simple greec. algorithm that first enumerates all
required time are computed for each input and cycles in the n-ulti-phase network and then covers
output of a block. The required time for all outputs each cycle witn one or two latches depending on
(primary outputs and state) is the block's goal whether the latch type is edge-triggered or level-
delay which is propagated back to obtain a sensitive. By covering a cycle we mean placing
required time for each intermediate signal in the latches at one or two inter-block connections on the
network. Arrival times corresponding to latch cycle. The algorithm finds the most common inter-
fanout delays are used for all inputs (primary inputs block connection and places a latch there. Any
and state) and are propagated forward to obtain a cycles that may become completely covered as a
corresponding arrival time for each signal. The result of this placement are removed from the list.
slack for a signal is simply the difference between The process repeats until no cycles are left. Also, to
its required and armval times. All signals within e prevent race conditions when using level sensitive
(same default value as in mis II, .5) of the most latches there must be at least one latch (controlled
negative slack are considered critical [sNG881. by 0i) along a path starting with a 0i input and

The delay of the critical path of a block is ending with 0 output. These latch requirements are
decreased by moving critical tail logic backward or taken into account in the covering heuristic. Since a
critical head logic forward. To move a block of logic latch contributes to total area as much as a 2-input
L off the tail of block Ci, all inputs to L must be NAND gate (i.e., two literals), the total
ready before oi by an amount of time equal to or contribution can be significant. Our heuristic
greater than the delay of the logic in L. The block performs quite well consistently yielding solutions
to which L is moved to must tolerate this with less latches than manual designs.
additional logic without violating its goal delay. Delay considerations are taken into account by
Similarly, logic that is not required to be valid at Oj weighting each inter-block connection point based
may be moved forward. The outputs of L (i.e., inputs on its slack. This favors placing latches' where

there is slack to absorb its delay. The value of the
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weight is the nnimum of the slack and latch delay in m s I i but are added by a separate program
values. Some latches may be initially specified as called after the logic transformations. The logic
necessary if the input they drive has a large fanout. network associated with each block may he area
The removal of such a latch would have a negative and timing optimized using any of the standard
effect on its input (the output of the previous block), methods. For examples in this paper, we used the
Its removal is therefore prohibitive and its presence standard mis i algebraic and Boolean area
is taken into account in the positioning of the minimization scripts, the speed-up command, and
remainder of the latches. technology mapping with delay optimizingparameters (i.e., map -m .75). A technology

Reset State Maintenance mapped mi s i I network is maintained for each logic
block of the multi-phase circuit.

Special care must be given in the movement of

logic across latches when a reset state is specified Moving Logic Between Blocks
for the finite-state machine. In many cases, the
reset state is not reachable by any sequence of inputs Routines have been implemented for moving logic
but rather a separate reset signal is used to force the forward and backward across logic blocks. These
latches to the appropriate state. Our algorithm routines are used to move critical logic from the tail
updates reset state information by keeping a list of or head of a block, restructuring as necessary, until
these latches and updating it whenever a logic either the block has satisfied its goal delay or no
move is made across one of its elements. In some movable logic can be found. Critical logic in block
cases, this may mean the duplication of a latch if a Cij is identified and moved backward or forward to
logic move requires it to have both logic values at another block. Internally, this is accomplished by
reset. The PODEM algorithm from test generation modifying the logic networks of the two blocks and
is used to determine the new reset values after a updating timing delays for each node in the
move. Reset state latches are marked for inclusion networks that are modified. The block from which
in the latch positioning step. logic was moved backward may have new inputs

and the other block new outputs. Conversely, for the
V. Implementation case of logic that is moved forward. This is

currently impiemented with signal renaming as
Our multi-phase logic timing optimization logic is moved between blocks.

algorithm is implemented as a set of extensions to Moves that would violate the goal delay of the
the logic optimization tool mis It (version 2.1) destination block are not permitted. The
[BRAY87]. The extensions include support for the destination block must be able to absorb both the
multi-phase structure of the circuit (i.e., separate gate delay of the logic being moved and any fanout
but related logic blocks), capabilities for moving impact. Logic may be moved from the head (tail) of
logic between blocks, and analysis and restructuring a block to the tail (head) of the same block.
of block delays. The algorithm for generating and determining the

logic to be moved back is similar to that used for
Support for Multi-Phase Networks computing the goal delay. Logic is not considered

for moving unless all the inputs arrive at least one
The input representation for the circuit is a single gate delay early. When there is no critical logic

description in one of the standard input languages which can be moved, the block may be restructured
(e.g., blif) with extensions for specifying the phase in an attempt to obtain a new network with early
during which each primary input will be sampled arriving inputs at the tail of the block so that this
and the phase during which each primary output may subsequently be moved. Non-critical logic may
will be generated. All other signals are considered also be moved (particularly if it is in the
to be internal state. Furthermore, the specifications transitive-fanin of the critical logic) as this may
for the inputs (outputs) contain arrival (required) enable subsequent speed-up/restructuring that will
times as offsets before (after) the rising edge of the permit other logic to move.
sampling (generating) phase.

Based on this added information, the single Timing Model and Restructuring
network is decomposed into separate networks for
each of the combinational logic blocks in the circuit. The timing model of the library used for
Latches are not represented in the networks stored technology mapping is used in all delay
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calculations. A latch is assumed to be driving all The SPUR CPU Controller
inputs to a block and its drive capability is the
same as that of a 2-input NAND gate. Of course, The SPUR CPU controller is an example of a four-
once latch optimization is completed, some of these phase sequential circuit. It was designed as two
latches may be removed if the inputs they drive can separate finite-state machines each having inputs
the absorb the additional fanout delay. and outputs on all four clock phases. The structure of

Restructuring is the process by which a new the circuit is illustrated in Figure 4. Basically, the
implementation of a critical path is obtained that state computation logic is concentrated during one
moves late arriving inputs closer to the outputs and phase and output logic is distributed so as to be as
early arriving inputs closer to the tail of a block, close as possible to the outputs.
Gates at the tail of the critical path can then be
moved back to an earlier block. The process of
generating a restructuring involves: (1) updating Inputs valid during 01, 42, and 03, respectively
input arrival times, (2) calling the misll speed-up
algorithm, (3) adjusting input delay times to reflect
latch fanout delays, (4) technology mapping the state
new network, and (5) determining whether to accept Lath LahL
the restructuring.

Restructuring in our algorithm relies on the mi s 1
spewd-up command. However, due to the imprecise
interaction between the 2-input gate based speed-up State
algorithm and technology mapping, as well as the
dominating effect of inputs with very high drive,
the rostructuring is rejected if it does not enable Present State Reg 03
moving the tail of the critical path off the block.

VL Experimental Results

Our algorithm was used on a collection of finite-

state machine examples to demonstrate the delay
optimizations possible. However, only the SPUR
CPU controller is a true multi-phase circuit
[KONG89]. The others are finite-state machines $3
from the benchmark suite developed for the
International Workshop on Logic Synthesis 0
[LISA88J. The results of timing optimization are
presented by placing the output of our algorithm
between two bounds. The upper bound (or worst case) Outputs valid during 01, 02,0, and 04, respectively
delay is that of the starting point for the
algorithm, namely, the output of mis I I area, Figure4
timing, and technology mapping optimizations.
This represents what is currently available to Our objective was to obtain a faster cycle time by
designers. The lower bound (or best case) delay is precomputing logic and distributing state logic
based on the idealized goal delays for each logic across all phases. The results are shown in Table 2.
block. The success of the algorithm is measured by Since cycle time was the primary criteria for
how close the result is to the goal delays. Recall optimization, no detrimental moves were accepted.
that the goal delay ma% t be realistic. Two encodings for the states were used. The first

Our timing optimization algorithm utilizes many corresponds to the actual SPUR encoding and the
parts of the mis I I logic optimization tool. Its second to a one-hot encoding scheme.
running time on the results presented in this section
ranges from 2.5 to 9.0 times the time requirea to use
misl to obtain the initial optimized and mapped
network (4.5 times on average).
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was written to accept moves that would permit up to
MIS Opt Goal Impr% Goal% a 20% increase in cycle time. Table 3 shows the

average results for 17 of the benchmarks (bbara,
SPUR Encoded bbtas, cse, dkt4, dk16, dk17, dk512, exl, ex3, ex6,
Cl time 6.M1 5A0 40 12.9 47.1 ex7, keyb, lion9, markl, sand, sl, styr).

2 ti 1.30 8.10 750 283 84.2
Q time 11.10 8.80 8.70 20.7 95.8 Cl Area Cycle Cl
C4time 5.90 4.90 5,80 17.0 IMr% Penalty Impr% Goal%
c=e time 34.0 2720 26.50 212 91.2
literals 323 375 -161 E -AJ 163 75 -23 -64.0
latches 62 -33.9 Encol 302 19.3 6,7 81.6
total area 447 541 -21.0 1Hot-Al 113 U. 53 58D

_Hlot-Bool 93 87 3.9 52.7
SPUR 1-hot Aveae 19.9 1A 3,7 716
C1 time 730 5.40 430 26.0 67.9
C2 d 8.90 7M7 680 13.5 57.1 Table 3

Urne 890 830 8.90 667
C4 me 520 5.60 5.10 -7.7 -400.0 Several variants of the examples were used to
cycle time 3030 27.00 2530 I0.9 66.0 collect the information presented in Table 3. The Enc
literals. 287 301 -4.9 examples were encoded using the fanin-oriented
latches 79 79 0 option of mustang [DEVA881. The iHot examples
total area 445 49 -32 used a one-hot state encoding. Aig or Bo indicates

whether the standard algebraic or standard
Table 2 Boolean mi ii script was used.

On the average, our retiming optimizations
The retiming optimizations resulted in a network enable an input to output delay improvement of

where the phases were more balanced in terms of 19.9% with an average area penalty of 11.4%. This
logic delays and the overall cycle time was faster. improvement is 71.6% of the difference between
The retimed one-hot representation was 10.9% what m1s 1 I alone can achieve and the idealized
faster than the starting point (i.e., the fastest goal times. Changes in the total cycle time are
network obtainable using the delay optimization generally small (i.e. 3.7% better t n average),
capabilities in misli) with a 3.2% area penalty. although some circuits did increase the cycle time
The encoded representation was 21.2% faster with a dose to the 20% allowed.
21.0% area penalty. These results are 66.0% and One last point to be made is that the ci nparisons
91.2%, respectively, of the difference between the of Table 3 assume an initial C12 goal firnm f 0. This
delays achievable with mi s I and the idealized is never the case. In reality, a second doc < phase is
goal times. (The result of optimization is used for precharging control and/or f-r other
occasionally better than the goal due to the computation. In the case of precharging, it will be
different networks generated during retiming and 10-25% of the duration of the main computational
the different optimizations they enable.) dock phase. In the case of computation dunng both

phases, they will usually be within 50% of each
Logic Synthesis Benchmarks other in duration and frequently comparable. In

these cases, our algorithm is even more useful in
The International Workshop on Logic Synthesis that logic is distributed across both phases and all

benchmarks are a collection of single-phase finite- available time is utilized. These are the typical
state machines. We viewed them as two-phase situations in which we expect our tool to be used.
circuits with inputs arriving on one phase and
outputs being generated on the other. This would be VIE Summary and Conclusions
a common implementation style in MOS technology.
Our objective was to minimize input to output delay Timing optimization of multi-phase sequential
(or just one phase's logic) rather than overall cycle logic is important in the design of high-performance
time. The reduction in output delay can be valuable MOS circuits. We have described an algorithm
in generating control signals for other parts of the that yields substantial improvements on a variety
circuits and allowing for wiring delays. The script of test cases. Input-output delays on a set of two-
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phase benchmarks have been reduced by 20% to Transactions on CAD, Vol CAD-6, No. 6,within 72% of the goal delays. Cycle time for a November 1987, pp. 1062-1081.
four-phase example was reduced by 21% to within [DAGE891 M. Dagenais and N. Rumin, "On the
91% of the goal delays. Area penalties are of the Calculation of Optimal Clocking Parameters in
same order and usually much less than the timing Synchronous Circuits with Level-Sensitive
improvements. The algorithm is implemented as a Latches," IEEE Transactions on CAD, Vol CAD-
script exploiting a set of extensions to the logic 8, No. 3, March 1989, pp. 268-278.
optimization tool Mis r1. [DEMl89j G. De Micheli, "Synchronous Logic

Many improvements to our algorithm and Synthesis", Proceedings of International
implementation are possible. Three are Workshop on Logic Synthesis, (RTP, NC) May
immediately obvious. First, additional delay 1989.
optimizations may be possible by exploiting the [DEVA88] S. Devadas, H. Ma, A.R. Newton, and A.
active time of the dynamic for computation Sangiovanni-Vincentelll. "Mustang: State
(DAGE89]. Second, area penalties can be reduced by Assignment of Finite State Machines Targeting
exploiting interblock don't care information and Multi-Level Implementations. IEEE
considering trading delay for area when performing Transactions on CAD, Vol CAD-7, No. 12,
the retiming (BART88]. Third, transistor sizing December 1968, pp. 1290-1300.
algorithms can make many retiming moves [EBEL88] C. Ebeling, private communication, 1968.
unnecessary for custom technologies and these [HILL86] Mark Hill, et. al., "Design Decisions in
should be made only if they also reduce area. Spur", Computer, November 1986, pp. 8-22.
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